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Abstract—We present the first analysis of the ablated plasma
flow acceleration region in tungsten cylindrical wire arrays within
1 mm of the wire core. We apply a recently developed modification
to the Lebedev rocket model to infer the 2-D distribution of
effective velocities which redistribute the array mass as a function
of time. From these data, it is possible to directly observe the accel-
eration region in a wire array. Analysis of radiography data from
the 1-MA Cornell Beam Research Accelerator machine suggests a
region of rapid acceleration extending up to 300.m from the wire
core in 16 wire tungsten arrays.

Index Terms—Precursor plasma, wire array Z-pinch.

I. INTRODUCTION

HILST the dynamical evolution of wire arrays is well
understood [1]-[4] and multidimensional magnetohy-
drodynamic (MHD) modeling has demonstrated significant
progress [5]-[8], a comprehensive predictive capability has not
been realized to date. Experimental investigations have contin-
ued to highlight the need to more closely examine the ablation
structure and its dependence on the initial parameters of the
array. In particular, the range over which the ablated plasma
is accelerated, and hence the extent to which magnetic flux
is convected into the array, is often a disputed point in the
comparison simulation and analytical work [9]-[11].
Recent work at the University of California at San Diego [12]
examined interferometer data taken for nonimploding arrays
on the 250-kA GenASIS device [13] for four-wire Al and
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W arrays. Two-dimensional areal electron density images al-
lowed analysis of flare structures at various radial positions.
The average density contrast, i.e., the average ratio of the peak
flare density to the minimum density between flares, was ~2
for W and ~1.3 for Al in line with previous studies [14], [15].
This work led to a modification of the standard rocket model
[16] which uses an additional sinusoidal axial variation of the
ablation velocity to describe both the axial and radial density
variations. The form of the velocity is given in (1). Here, the
y-offset is the density obtained from the standard rocket model
calculated as the mean of V11 and Vi1 2, Aabi is the average
flare wavelength, and the amplitude is the range of effective
ablation velocities needed to describe the data. This is then
substituted into the standard rocket model for the radial density
profile

Va1 (2)= {(Vabl’l ;Vabl’z) sin (/2\7::1)}

n (Vabl,l ;Vabl,Q )

rosstv (i ! (~(5))] @

where R, is the initial array radius. An advantage of this
method is that an automated fit routine can be constructed using
(1) and (2), which can then be used to assess the variations
of the fit parameters required to match data from calibrated
radiographs. The remainder of this paper presents the first
results from such a process.

ey

II. ANALYSIS OF THE FLOW ACCELERATION REGION

A previous study at the MAGPIE facility examined inverse
wire-array systems using interferometry [14]. Comparison of
the experimental data to analytical theory and numerical sim-
ulations suggested that, in an aluminum array, the acceleration
region extended ~1.8 mm from the wire. Here, we examine
16 x 13 pm tungsten arrays on the 1-MA 100-ns Cornell Beam
Research Accelerator (COBRA) generator [17] at Cornell Uni-
versity using X -pinch-based radiography. We make use of the
COBRA-STAR [18] system which allows up to five calibrated
radiograph frames per experiment with < 5-pm spatial reso-
lution and ~1-ns temporal resolution. An example image is
shown in Fig. 1.
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Fig. 1. Radiograph of a 16-mm-diameter 16 X 13 pm array on COBRA at
108 ns. Image shows the full array diameter and ~8 mm of the 23-mm array
height centered at the midplane. The box on the left is shown in more detail in
Fig. 2, and the dotted line shows the step wedge used for calibration.

Each radiographic film is filtered using a 25-pym Ti foil,
passing photon energies of ~3-5 keV. Additionally, a W step
wedge is deposited in this filter via radio-frequency sputtering.
Step-wedge thicknesses of 13.75, 27.5, 70.1, 163, 316.3, 555,
and 1079 nm were applied giving calibrated exposure levels at
W areal densities of 5.3 x 1074 to 2.1 x 1072 kg - m~2.

Fitting these discrete points into an exponential function
allows calibration of the continuous exposure levels observed
on the film in each case. An example calibrated radiograph is
shown in Fig. 2 which shows the expansion of a single wire on
the edge of the array (red box in Fig. 1). Calibrated lineouts can
be taken at any point to examine the density variation (Fig. 2).
Each lineout can then be compared to the modified rocket
model, and the fit routine is applied to optimize the velocity
and wavelength parameters to provide a best fit. In general, the
density range of the experimental data, i.e., the amplitude of
the density variations in the axial direction, is well described by
the model using two limits on the ablation velocity (Fig. 3). The
wavelength parameter fit is less convincing, although several
cases do show good periodicity over several millimeters (e.g.,
the 400-um lineout in Fig. 3). At positions > 100 pm from
the wire core, a single wavelength provides the best fit, but
closer to the wire core, the fit becomes far less good, and
in some cases, a two-component wavelength appears more
appropriate.

Estimates of the error on the fits shown in Fig. 3 can be
carried out using residual analysis, and the goodness of fit varies
considerably. For the full 2 mm of axial extent at 600 pm
from the wire core [Fig. 3(a)], the standard error is ~10%.
For the » =400 pm plot [Fig. 3(b)], it can be seen that the
goodness of fit at either end of the plot is very poor and the
standard error is >100% of the experimental measurement. In
the section between 4.5 and 5.5 mm, however, the fit is rather
better and gives an error of ~5%. Similar tends occur in the
r = 30 um plot [Fig. 3(c)]. We show this variation in fit quality
as a demonstration of the difficulty of comparing model data to
experimental data in these ablating wire experiments. For the
remaining analysis, we will focus on the data between axial
positions of 4.5 and 5.5 mm, where the fit is reasonable (and
therefore meaningful) and also where the wire core is relatively
straight relative to the z-axis.
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Fig. 2. (a) Calibrated radiograph data showing the expansion of a single wire
on the edge of the array (red box in Fig. 1) and (b) lineouts at various radial
distances from the center for the wire core.

The trends in the fitted ablation velocities and wavelength
with radial position are shown in Fig. 4. This shows that a
rapid increase is observed over the first 300 pm, before reaching
some asymptotic value ~5.5 x 10° m - s~L. This region of ac-
celeration likely describes the extent to which the drive current
profile extends into the array interior for this array configura-
tion. It should be noted that the velocity 600 pm from the core is
much higher than the ablation velocity used to describe the gen-
eral ablation rate from this array, as determined via precursor
column formation times and mass density evolution [19], [20].
This previous work examined similar arrays on MAGPIE [21]
and COBRA to compare the effect of current risetime on wire
ablation at fixed peak current. It was found that the precursor
column formation time and temperature on COBRA could be
well predicted from the standard (i.e., single velocity) rocket
model developed from MAGPIE data under the assumption of
Rev < 1 (ie., the plasma flows are diffusive with respect to the
accelerating B-field) and a simple pressure balance model. Use
of a similar velocity also predicts the wire breakage time and the
start of the implosion on MAGPIE [16] and COBRA [2], under
the assumption that the implosion is triggered after ~50% of the
initial wire mass has been ablated. When comparing precursor
column formation times with implosion start times for wire
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Fig. 3.  Comparison of experimental lineouts to best fits using the modified

rocket model at (a) 600, (b) 400, and (c) 30 pm radially inward from the
wire core.

arrays on the 20-MA Z generator at Sandia [22], however, the
standard rocket model cannot simultaneously correctly predict
both [20]. The use of more than one velocity in the rocket
model was developed in an attempt to better describe the Z
experiments. In this case, a two-velocity rocket model approach
required velocities of 3.5 x 10° m-s~! and 0.9 x 10° m -s~!
to describe the precursor column and implosion start times,
respectively, which differ by a factor of approximately four.
Note that, in Fig. 4, the maximum difference in the velocities
used is only ~10%, which is generally consistent with the
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Fig. 4. Plot of (a) fitted ablation velocities, (b) flare mass density contrast
ratio, where the solid horizontal line is the average value from previous work
(e.g., [12]), and (c) fitted axial wavelength as a function of radial position
from the wire core, where the solid horizontal line is a typical value for the
wavelength from previous studies (e.g., [16]).

previous use of a single-velocity model, albeit with the details
of the axial variation in the ablated plasma flow now included.
It is still unclear whether the requirement for a rocket model
with greatly different velocities required to match results for
wire arrays on Z is due to the significantly greater mag-
netic pressures involved or some other physical mechanism.
Unfortunately, ablation data to compare predictions too are
extremely limited.

The plasma flow beyond 600 pm from the wire core is
obscured by other wires in the array, but it is possible that
the flow velocity decelerates after this point, for example, via
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interaction with the B-field local to the wire, which remains
significant relative to the global B-field in these relatively
low-number wire arrays. It is also possible that the plasma
remains at these high velocities or accelerates toward the axis
reaching the axis at much earlier times than precursor column
formation times in these arrays suggest. Inconsistency in the
precursor formation time is perhaps confusing, since these
data are taken from the same set used in [19] to examine the
scaling of ablation physics with current risetime. Given that
the velocities in Fig. 4 are higher by about a factor of ~3.5,
this may be explained by a reduction in the collisionality of
the flows, leading to a delay in the appearance of the precursor
column, and is the case for W flows at early time [20]. More
experimental data are required to determine which of these
scenarios is appropriate. This examination of the flare contrast
and wavelengths suggests that these parameters have not yet
evolved to the expected values typically observed far from the
wire core (indicated by the solid lines on the plots in Fig. 4) and
it is possible that the flare structure is still evolving in the radial
direction.

It should also be noted that, while there are “accepted” values
of the flare wavelength and contrast, detailed examination of the
temporal evolution of these remains to be investigated for all
array parameters. The most detailed experimental work to date
regarding the flare evolution is presented by Knapp et al. [11],
who plot the growth and saturation of the flare wavelength as
a function of time in the early phases of the current drive.
Furthermore, the saturation of the wavelength growth is shown
to be coincident with a change in the magnetic topology which
leaves open field lines between the wire position and the array
axis, thereby disrupting the MHD-instability positive-feedback
loop which initially drives the growth. In this work, data are
taken later in the current drive than for data in [11], and so, the
flare wavelength is expected to be relatively constant in time.
Indeed, this is confirmed in recent work by Douglass et al. [23],
who provide further detailed radiographic data on ablating
wire arrays.

III. CONCLUSION

This work has represented the first experimental investiga-
tion of the acceleration region (< 1 mm from the wire core)
during the ablation phase of wire arrays which have a con-
vergent magnetic geometry. While analysis of more data is re-
quired, present data indicate a rapid increase in velocity within
300 pum of the wire core. Future studies will focus on the evo-
lution of this region over time at higher drive current. Since the
mass that ablated from the wires is proportional to the square
of the drive current, the increased mass will provide greater
absorption on radiography relative to both the present results
and the lower detection limit, improving signal/noise ratio at
comparable times to this study and extending the timescale
over which measurements can be effectively made. In addition,
using fewer wires, e.g., eight-wire arrays, would provide an
extended radial view due to the larger wire spacing. These
data can be then directly compared to existing computational
models.
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